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Abstract. Cable robots have been extensively used for the loading and unloading
of cargo in shipping industries. In this paper, we look at a two stage cable robot, i.e.,
a cable robot with two moving platforms connected in series. The sea condition in-
troduces disturbance into the system. This disturbance is considered while modeling
the dynamics of the two stage cable robot. A robust controller is designed which can
assure robust tracking of the desired end-effector trajectory in the presence of the
disturbance. Simulation results presented show the effectiveness of the controller.
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1. Introduction

One of the motivational applications behind this study is a crane ship
which is used to transfer cargo from a container carrier to a smaller,
lighter ship at sea when a port is not available for the container ship.
This transfer operation can be unstable unless the sea condition is prop-
erly accounted for. During the last few decades, many researchers have
studied wire suspended mechanisms, such as a crane, to deal with this
problem. Patelet al. (1978) derived the model of a ship-mounted crane
incorporating the coupled motions of the crane and the ship. Schellin
et al.(1989) extended the model to three dimensions allowing for all
ship motions and load pendulations, and damping in the cable. Nayfeh
et al. (2002) designed and implemented a controller that suppressed
cargo pendulation on most common commercial cranes. Shiang et al.
(1999) investigated four cable robotic crane to provide improved cargo
handling. Based on the concept of parallel platforms, NIST (1992) has
developed the ROBOCRANE which can control the position, velocity,
and force of tools and heavy machinery in all six degrees-of-freedom (x,
¥, 2, roll, pitch, yaw).

This paper deals with a new type of a crane robot with two moving
platforms in series, a conceptual design developed by NIST for skin-
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to-skin open-ocean transfer of cargo [Schulz et al. (1999)]. The upper
stage is motivated from keeping the suspension cables from contacting
containers adjacent to the target container, and also to increase the
system redundancy. The lower stage is designed to engage the container.
This two-stage design promises the desired goal of transfer of cargo from
one ship to another safe. This two stage cable robot can also be used
with helicopters for different rescue and transport missions.

In this paper, we present a dynamic model for the two stage cable
robot, incorporating the disturbance from the sea condition in section 2.
Section 3 deals with the design of a robust controller for robust tracking
of the desired end effector trajectory in the presence of disturbance.
Section 4 presents some simulation results.

2. System Dynamics

Fig. 1 shows the kinematic chain of the two-stage cable robot. It is
composed of an upper spreader (B) and a lower spreader-end-effector
(C), which are connected by 12 cables to a rotator (A). The rotator is
rigidly attached to a body of large mass, generally a ship or a helicopter.
12 actuators are mounted on the rotator to control the 12 cables. Out
of the twelve cables, six cables are directly connected to the upper
spreader and the other 6 cables pass through 6 pulleys on the lower
spreader and are then attached to the upper spreader.

The motion of the rotator is coupled to the motion of the upper
spreader and the end effector through the cables. Due to the sea con-
dition, a ship is subjected to a disturbance motion. In the helicopter
case, it cannot hover perfectly. There is always a disturbance present
from the wind. This disturbance motion coming on to the rotator has
to be modeled while considering the dynamics of the cable structure. So
the rotator cannot be thought of as being inertially fixed, but may be
considered to have a “prescribed” motion coming from the environment.

The motion of end effector can be analysed relative to the inertial
frame or relative to a frame attached to the rotator. From the applica-
tion point of view, if the end effector is supposed to transport things
from one part of the ship to another, then it will be easy to specify its
desired motion in the frame attached to the ship, i.e., the rotator frame.
But if the target is in the inertial frame, then the desired motion of the
end effector, relative to rotator frame cannot be precisely specified. In
that case, it is good to specify the motion of the end effector in the
inertial frame. Again, if the target of the end effector is in another
ship, then we cannot express the desired motion of the end effector
in either of the frames precisely. In such a case, generally a visual
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feedback is necessary to keep track of the target. So it looks like either
formulations are equally good. But if we select to express the motion of
the end-effector relative to the frame attached to the rotator, we expect
to separate out the disturbance from the dynamic equations, which in
turn will make the design of robust controllers easier.

nxv\(]:_n_,ny N

Figure 1. A sketch of a two stage cable system along with geometric parameters.

2.1. KINEMATICS

Consider an inertial coordinate frame N with origin Oy and basis
vectors Ny, ny,n;. The rotator of the robot has a coordinate frame
A fixed to it with origin O4 and basis vectors ay, ay, a,. The upper
spreader (end-effector) has a coordinate frame B (C) fixed to it with
origin Op (O¢) and basis vectors by, by, b, (cx, ¢y, cz).
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The position, O4 of A, is described by x4 = (z4,ya,24)T along
three coordinate directions ny, ny, n,. We choose the orientation of
frame A to be given by a space-three rotation sequence of 14 about
ny, 04 about ny, and ¢4 about n,. Let W4 = (¥4,04,04)T. So
the configuration of frame A, at any instant is described by Xz =
(x4, ®4) = (4,Y4, 24, % 4,04, 4)T. For the rotator, a vector written
in terms of coordinate frame A can be written in terms of inertial frame
using the rotation matrix, ~ R 4 which is given as

N COaCPa 51vaS04Cha — SPpaCPs CaS04ChA + ShpaSta
Ro=[COaSbpa SYaS04Sps+ChpaCthsa CrpaS04Sps — ChaSia

-S04 S1paC04 CpaCl,4
(1)
If the angular velocity of A w.r.t. N is, wg1ax + we2ay + we3a,, from
rigid body kinematics,

Wal 1 0 —-S64 @A )
Noagnv=|wa|=|0 Cpa SpaChs| |64 | =Pada, (2)
Wa3 0 —SYa CyaCls] [ o4

Here, we have introduced a notation Awge, which means the angular
velocity vector of a frame B w.r.t. frame C, expressed in a frame A. The
notation holds for all the vectors used in this paper.

As already mentioned, we would like to analyze the motion of the
end-effector relative to the frame attached to the rotator .A. So we
define the position and orientation of B and C in A, by X; = [x;, ¥;]
= (4 %, 2), (Wi, 6;, $:)]T, i = b, c. Small letters are used to indicate
that the position and orientation quantities are described with respect
to frame A.

If the angular velocity of B w.r.t. A is, wp1bx + wpzby +wpsb,, from
rigid body kinematics,

wh1 1 0 —~S6, Uy .
Bupa= |wiz| = |0 Cyp» SyuCO | |6 | = BEs, (3)
wp3 0 —Svyp CyYpCOy] | s

where W, = (33, 0, ¢p) 7
Similarly if the angular velocity of C w.r.t. A is we) Cx +weaCy +we3 €y,
then from rigid body kinematics, we get,

Wet 1 0 —S6: 7 [ e .
CWC.A =|wa| =0 C¢¥ SY.LC0. e_c = F.Y,, (4)
We3 0 *ﬂsdk (7¢k(700 ¢c

where \i’c = (d}c, 9.6’ ¢C)T'
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Angular acceleration of B,V ags in inertial frame, N, can be derived

as follows,

N

waN =
= YRy 4w +V Ra AR Bupa

apnN

but, NRA ‘AwAN

similarly, NRB BwB A

therefore,

NCYBN

NwAN +V WBA
dN "
7 WBN
d
P [NRA Awan + VR4 “ARp BwBA]
NRa?wanw + YRa Aoan +V Rp Busa
+ NRB Bd)g A
(where YRz = NR4 ARpg )

(5)
wan x VR A
wan xN waw =0
Nogn x NRg Buga = Nupp x Nopa
NwAN X N‘UBA
NRa ( Avan x “ARg BUJBA)
NRa[Aaan + “Rs Bapa
+(Awan x “Rp Bwp,)] (6)

N
N

Where, “ainy = Ao = [Wa1 Wa2 wa3]

= Pa\i’a +Pa‘.I.’a (7)
Baga = B.‘bB.A =[wp wr2 we3)
= BWU, + PV, (8)

Similarly, we can derive angular acceleration of C, a¢ in inertial

frame N as

Naey = YRy [Aouw +4 Re Caca + ( Awan x “ARe C‘UCA)] (9)

Fig. 1 also shows cable attachment points Cj, .-, Cg on the end-
effector, By, - - -, By2 in the frame B, and A, - - -, A7 on the rotator. Let
a;, b;, ¢; denote the vectors from O 4, Op, O¢ to the cable attachement
points, A;, B;, C; repectively, expressed in their local frames, A, B and
C. Let us also define 6 vectors q; connecting B to A, 6 vectors v;
connecting C to A, and 6 vectors w; connecting C to B (see Fig. 1), in
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inertial frame, N.

Qi =Bi14d;  qx=DByd; q3 =B34y ]
Q= Bady qs=BsAs q¢ = Bg4g
V] = ClA'] Vg = 02A8 V3 = C3A9
=1 == 5 —o (10)
Va = C4A19 V5 = C5A1¥ Vg = CsAlg
w1 =C1B;  wp=C3Bg w3 =C3By
| Wy =CyByg ws=CsBy; wg=CgBi2 |

We can express the vectors, q;, v;, w; in terms of cable attachment
points and origins of local frames. For example, we can express qi
connecting B; to Ajp, in the inertial frame N as

a1 = —OpB) — 0405 + 044,

But, OgB, = “R4“Rgb,
040 = NRA Xp

OAA1 = NRA a
=>q = —YR4?*Rgb;— YRaxs+ YRy a

= NRy4 (— “Rp b1—Xb+al)
= YRaq (11)

where q; = (— ARg by — xp + al). We can express v; connecting C
to A7 in the inertial frame N as

vi = —O¢Ci — 040¢ + OaA;

But, OcCi = VR4 “Re c;
OTOC’ = NRAxc
OaA7 = YRyag
=>vi = ~VR4*Rcei— YRax.+ YRy ag

= MR, (—ARCC1—xc+a7)
= YRyw (12)

where v; = (— ARc ¢1 — %o + a7). Simlarly, we can express w, as,

W1 =

But, OcC)
OpOc¢
OpB;

= Wi

Il

—0¢C, — 0506 + OgB,

NRA“Rc c;

NR.A (xc‘xb)

NR4ARg by

~NR4ARe ¢y — YRy (xc— %)+ VR4 ARg by
NR,4 (— ARc €1 — x.+xp + “Rg b1)

NRa wy (13)
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where W = (- ARC C1 — Xe + Xp + ARB bl).

we can also write, q; = ¢;Q;, vi = v;V;, and w; = w;W; , i =1,---,6.
So the length /; of cable i is given by
_ Ja(X), i=1,---,6.
b= {vi—S(x) +wi¢(X), i=7,---,12. (14)

where X = [X4 X X |T. On defining 1 = [la, - -, 112)T, the position
kinematics of the robot is captured in the following nonlinear map,

1=1(X) (15)

2.2. RIGID Bopy DyYNAMICS

2.2.1. Force Equation

Rotator, upper spreader, end-effector are three different bodies present
in the system. Since the rotator has no motion (except disturbance
motion) because of its relatively large mass, we are not interested in
writing the equations of motion for this body. So, we write equations
of motion only for the upper spreader and the end-effector. By doing
force balance on the upper speader we get the following equations of
motion,

d?xp
mp—z = > Fen
— mpg+[@ - G —W1 - —Wg]T

(16)

where T is the vector defining tension in different cables whose direc-
tions are given by the coefficient matrix. We know, xp = (x4+ NR A Xp).
Also we can write, §; = q;/¢; = NR 4 & /@;. Similarly, we have ¥; =
NR4 ¥; Jvi, Wi = NR 4 w; /w;. Substituting these in the above equa-
tion we get,

Dx,b

myss +my VR (% + VRaxo +2 VRaky) — Y Rmug
=[§1_ ... 8 w1, iﬁ]T (17)

Q1 g6 w1 we

As already mentioned, frame A is subjected to disturbance from the
environment it is located in. This disturbance manifests as perturbation
inx4 and YRy . Assuming that we know cable lengths at any time,
Dy p is the only term in the above equation that gets affected because
of this disturbance. So this term can be treated as disturbance for the
design of robust controllers for T.
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2.2.2. Moment Equation
Doing Moment balance on the upper speader, we get the following
equations of motion:

oy +Y wpn x Is Nuwpp
=[rp1 X @1 --- rBe XGs rer X Wi - - rp1a X Wg|T, (18)

where Ip is the inertia matrix of upper spreader w.r.t. inertial frame
N. Also Ip = ¥“Rg I, VR, = YRy ARp Iy( VR4 ARg )T, where
Iy is the inertia matrix of upper spreader w.r.t. to frame B. rg; is
the position vector from Op to the attachment point B; expressed in
inertial frame. So we can write rg; = V Rp Brp: = VR 4 ARp Bro1,
where Bry; is the position vector expressed in frame B. We can also

write §1 = VR4 Q1/q1 So, rB1 x 41 = VR4 ( ARp Bry; x fl1/¢11)-
Using this, R.H.S. of Eq. (18) can be written as

RHS. = MRy [ ARgBrpa x ...~ ARp Bryjy x BT (19)
From Kinematics, we have Vwgny = VR4 Avinv+ VR4 ARg Buga
andNaBN = NRA [AaAN—l— ARp Baga + ( Auan x ARp BwBA)].
Substituting these equations in L.H.S. of Eq. (18) we get,

LHS.= YR, { ARg I, Baga+ ARp Iy “RE Aaun +

ARg I “RE(Awan x “Rp Buwpa) + (Awan + “Rs Buga)
x (“Rg I “RE “wan + “Rg I Buga) } (20)
Using Egs. (2), (3), (7), (8), the above equation can be modified as,
LHS.= YRy { ARg Iy(By¥y + Pyby)
+ ARg I ARL(Pa¥a + Ps¥a)+ *Rp Iy *RL(PaV4 x “Rg Po¥,)
+ [(PA\PA + “Rg P,,\i:,,) x ( ARg I ARLP4¥ 4 + ARg Ibe\ilb)] } .
We can group terms in the above equation as,
LHS.= VR, { ARg I(Py¥y + Poly) + “Rg Po¥y x “ARp LRy,
+ ARg I ARL(Pa¥a + PaVa) + “Rp I, “R5(PaVa x “Rg P,)
+ (PA\iI A+ “Rs P,,\i:,,) x ARg I AREPAU 4
+Pa¥ax “Rp Pyl } .
The above equation can be compactly written as

LHS. = YRy { “Rg LR, + Fo+ Do) (21)
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where
FO,b = ARB Ibl‘:’b\ilb + 'ARB Pb‘I/b X 'ARB Ibe\i/b
DO,b = ARB Ib ARE(PA‘PA + PA\.I./A)
+ ARB I ‘ARg(PA\I/A X ’ARB Pb\I/b)
+(Pa¥a+ “Rg Poiy) x “Rg I, “REP4 ¥ 4
'+124q1A X 'A}?B ]bf%dh,.
Substituting for the modified forms of LHS and RHS in Eq. (18), we
get
ARp IR, + Fo + Doy )
=[ARBBrb1x%1L"'— ARBBrblzxg‘g“]T- (22)

As in the force equation, even here Do is the only term that depends
on the perturbation in frame A. So we can treat this term as distur-
bance term to design Robust Controllers. We can combine both force
and moment equations as

My F, Ds
[ % ~ e N, e
[mbla 03 } [’:‘b 4| Osx1| | Dxp
03 “ARsLP| | Fop Do
J
_r ‘-il/ql ——Ws/’lﬂﬁ )
B [ ARg Bre1 x@i/¢1 -+ — “Rp Breia x Wa/ws} T 23)

where, I3, 03, and O3x; are 3 x 3 identity matrix, 3 x 3 zero matrix, and 3 x 1
zero vetor, respectively. Similarly, we can write the equations of motion for
end-effector as

M, F. D,
- N — e —
ol B
03 ARC IcPc ‘I’c FO,c DO,c
ii
— V1/u1 —We /we
B [ ARc Cre1 x ¥1/v; -+ — ARc Creg X V_Vs/ws] T 24)

Note that in the above equation, in the term, Cre;, ¢ goes from 1 to 6, and
then repeats again from 1 to 6 instead of from 7 to 12. This is because v;
and w; cable pass through the same attachement point, i.e., there are only 6
attachment points on the end-effector. Combining Eq. (23) and Eq. (24) leads
to

M(x)x + F(x) + D(x,x4) = J(x)T, (25)
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- 48] mor 3.
b= [ aw= [2]. -

Note that x = [xp, ¥p, Xc, ¥

3. Robust Controller

3.1. SLIDING MODE CONTROL

The theory of variable structure systems (VSS) with sliding mode has been
studied in detail during the last thirty years. It rests on the concept of changing
the structure of the controller in order to obtain desired response. There are
several advantages in VSS; e.g. high speed response, good transient perfor-
mance, insensitive to certain parameter variations and external disturbances
[Utiks(1976), Utkin(1979)], while standard control schemes such as the com-
puted torque or inverse method is very sensitive to parametric uncertainty,
i.e., to imprecision on manipulator inertias, geometry, loads, or friction terms.
Hence, the VSS approach has been widely applied to the design of many
practical control system, such as servo system, robot manipulators, and flight
control systems, etc.

The sliding mode control (SMC), which belongs to a class of VSS, is
considered for the control of the dual-stage cable robot in the presence of
uncertainties, since SMC not only provides a robust and accurate response,
but also makes the system response insensitive to changes in the system pa-
rameters and load disturbances. In the following derivation, it is assumed that
all the cables keep positive tensions during the motion. Also, the actuators
are ideal and cable stiffness is longitudinally large to instantaneously carry
the wrench torque to the end-effector. In addition, the control states x and
the motion of taget x, are detected by a camera attached to the rotator.

First of all, we define a sliding surface and Lyapunov function in the
following equations.

sex1 =X+ A(x —x,), (27)
V= %STS , (28)
A1 o
where A = . Differentiating Eqn. (28) w.r.t time leads to
o A2
V = sTs
— T .o .

sTI M~ (x)(J(X)T — F(x) — D(x,x4) ) + Ax].
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To make V negative, we select the control law as

u=J"4x) [ F(x) + M(x)(-Ax — Ksgn(s) ) ] , (30)
kl (0] sgn(sl)
where K = , sgn(s) = : , which leads to
o k12 sgn(s12)

V = sT[-M~Yx)D(x,x4) — Ksgn(s)] ,

12 12 _
< Zl |Sz'|(Z:1 |((M~1)i5|D; — ki) (31)
1= =
! 12
= = X milsil -
i=1

6 — -
We select ki = 3 |(M~1)i;|Dj +m: and |[D(x,x4)|i < Di, i=1,---,12. The
j=1

total energy decreases since V < 0 and the invariant set to satisfy V = 0
has only s; = 0 as its candidates. Hence, there does not exist any other
points where system may get stuck. Hence, the equilibrium at x4 is globally
asymptotically stable as long as cables are in tension.

The idealized form of the methodology results in perfect tracking of the
required signal. However, certain non-idealities associated with its implemen-
tation cause the trajectory to chatter along the sliding surface, resulting in
the generation of an undesirable high-frequency component in the trajectory.
Not only is the high-frequency component undesirable in itself, but also it may
excite high-frequency dynamics associated with the control system which have
been neglected in the course of modeling. To avoid chattering, we replace the
sgn() function by the sat() function given as

S; sgn(%‘;), [si]| > @,

sat(go) = { 35, otherwise ’ (32)

where we used a constant boundary layer thickness as ® = &, [1,---,1]T.
Hence the control law now looks like

u=J"1(x) [ F(x) + M(x)(—Ax — Ksat(£)) ], (33)

3.2. BOUND ON DISTURBANCE

To design successfully the proposed controller for the uncertain system given in
Eq. (26), we have to estimate the bound of the disturbance term D(x,x4). Be-
cause of the complexity of D(x,x4), we illustrate the method by only a trans-
lational motion of the rotator j\ﬁ:gA). Hence, we get x4 = (%4, Ya, 24,0,0,0),
which simplifies VR4 =1, VR4 = O, R4 = O,aa = wa = 0. Given the
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above conditions, D(x,x4) reduce to

—MpZq
_mb:i/.a
—MpZq — Mpg
()3x1
—medq
—Meca
—McZq — Mg
L Osxq i

D(x,x4) = (34)

If we prescribe the motion of the sea as a sinusoidal function of the form
Aisin(wit), i = «,y, 2z, D(x,x4) is bounded by a state independent vector D
as

mbngx
mbszy
mpwl A, +mpg
Os3x1
mew?2 Ay
mewlA,
mcwaz + m.g
L Os3x1 -

|D(x,x4)| <D = (35)

4. Simulations

A simulation for the two stage cable robot-implementing the sliding mode
controller was developed in Matlab Simulink. We list all the parameter values
in Table 1, which are actual values shown in NIST’s design of the 2 stage cable
robot.

mp and m. are the masses of the upper spreader and the end-effector
respectively, I;; is the jt* diagonal entry of a frame i’s inertia matrix in
the local frame, and r;; stands for the position vector between jt* cable
attachment point and the origin on a frame i. m, includes the load and the
end-effector mass. In this simulation, we prescribed a sea motion as a simple
periodic function x4 = [0, 0, 1*sin(0.5nt),0,0, 0], only allowing a vertical mo-
tion. From the result of Section 3, D = [0, 0, (27)%*my, Oy x5, (27)2m,, O1x3] T,
where we treated the gravitational terms (—mpg, —m.g) as known terms.
In addition, the set point x; = [0,0,6,0;1x5,10,0;1x3]T and initial states
X =[0,0,5,01xs,8,01x3]”. In this case, there doesn’t exist any orientational
motion since the stabilizing controller keeps all the angles from deviating from
their initial values, which make the inertia matrix M be diagonalized. Hence,
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Table I. Simulation parameters

I Param. I Value I Param. | Value I
my 100 Te1 (1.03,3.04,0)
me 500 Te2 (~1.03,3.04,0)
Iy 33.67 Te3 (~1.03,-1.01,0)
I 8.66 Tea (~1.03,-1.01,0)
Ins 41.66 Tes (1.03,-1.01,0)
I, 1550 Te6 (1.03,-1.01,0)
Iz 180 Ao 5
Ies 1727 o 5
b1 (1,2,0) Tal (0,3.6,0)
T (-1,2,0) Ta2 (0,3.6,0)

Tb3 (-1,2,0) Ta3 (=3.1,-1.8,0)
Tb4 (0,-2,0) Taa (-3.1,-1.8,0)

Ths (0,-2,0) Ta5 (3.1,-1.8,0)
To6 (1,2,0) Ta6 (3.1,—-1.8,0)
o7 (-1,2,0) Ta7 (1,3,0)
T8 (1,2,0) Tas (-1,3,0)
Tbo (-1,2,0) Ta9 (-1,-1,0)
Tb10 (1,-2,0) Tal0 (-1,-1,0)
Tb11 (1,2,0) Tall (1,-—1,0)
Tbv12 ('—1,—2,0) Tal2 (1,—1,0)

from the Section 3, the control gain k is given by

0 1
0 1
(0.57)? 1
k Osxi + 17 : (36)
(0.57)? 1
Osx1 1

As shown in Fig. 2, the control performance looks good and the cable
tensions oscillate between 400N and 1.2kN. In this simulation, it appears that
the cables do not become slack.

5. Conclusions
This paper dealt with a new type of a cable mechanism, a two stage cable robot

with two moving platforms connected in series. Such cable robots can be used
to transfer cargo for crane ships to a smaller ship at sea. The disturbance is
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Figure 2. State and input trajectories of the sliding mode controller under a
perturbation z. = 3in(0.5xt)

considered while modeling the dynamics of the two stage cable robot. A robust
controller was designed which can assure robust tracking of the desired end-
effector trajectory in the presence of the disturbance. Simulation results was
presented to show the effectiveness of the controller.
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